Modelling Type Ia supernovae with single white dwarf progenitors

PRESENTER: Kate Blackham

ABSTRACT: This project sought to find a Galactic birth rate for Type Ia supernovae (SNe Ia) with progenitors that are a WD accreting mass from a companion non-WD. SNe la are used as 'standard candles' to measure intergalactic distances and occur when a white dwarf (WD)

exceeds its maximum mass: the Chandrasekhar mass, $M_{Ch} = 1.44 M_{\odot}$ [1]. The accepted Galactic birth

rate of SNe Ia is (4 ± 1) × 10⁻³ per year [2]. It is not known what proportion of SNe la occur via the potential progenitor types; if more

a WD-WD collision than a single WD accreting matter from a companion, is our assumption that SNe la are standard candles valid?

METHODS

- 1. Population synthesis simulations were performed using the Binary Star Evolution (BSE) code [3].
- 2. Models were created with parameters that maximized the production of SNe Ia from accreting WDs.
- Fourteen models were created with 170 × 170 × 170 grid points, Z = 0.02 or 0.001, and a novae mass retention factor governing the amount of mass that is lost due to novae of $0.4 \le \varepsilon \ge 1.0$, based on the findings of [4].

RESULTS

Spiral galaxies have these ELD SNe Ia birth rates:

Model no.	Ζ	3	ELD SNe la birth rate / yr ⁻¹
1	0.02	1.0	1.4910×10^{-3}
3	0.02	0.9	1.4832×10^{-3}
5	0.02	0.8	1.4755×10^{-3}
7	0.02	0.7	1.4681×10^{-3}
9	0.02	0.6	1.4608×10^{-3}
11	0.02	0.5	1.4536×10^{-3}
13	0.02	0.4	1.4470×10^{-3}

In spiral galaxies, 37% of Type la supernovae may arise from the edge-lit detonation (ELD) of an accretion disk.

Image credit: ESA/Hubble

Take a picture to download the full paper

Normalized histogram of Type Ia supernovae by primary initial mass. Red: He white dwarfs; Green: C-O white dwarfs that accrete mass to the Chandrasekhar mass. The choice of initial parameters prevented the creation of significant numbers of SNe Ia via C-O WD collision within the models.

Elliptical galaxies with little gas and dust have a lower birth rate of ELD SNe Ia:

Model	Ζ	3	ELD SNe la birth rate / yr ⁻¹
no.			
2	0.001	1.0	8.7640×10^{-4}
4	0.001	0.9	8.7391×10^{-4}
6	0.001	0.8	8.7201×10^{-4}
8	0.001	0.7	8.7032×10^{-4}
10	0.001	0.6	8.6764×10^{-4}
12	0.001	0.5	8.6656×10^{-4}
14	0.001	0.4	8.6443×10^{-4}

The peak ELD SNe Ia birth rate occurs around 2 Gyr, making this a more common progenitor in young galaxies and spiral galaxies:

Once accretion begins, ε tends to 1 [5], accelerating the accretion. The BSE code does not allow a time-varying ε , but with $\varepsilon = 1$, the accretion phase is short:

REFERENCES

[1] Chandrasekhar, S. 1931, ApJ, 74, 81 [2] Cappellaro, E., Turatto, M., Tsvetkov, D. Yu., Bartunov, O. S., Pollas, C., Evans, R., & Hamuy, M. 1997, A&A, 322, 431

[3] Hurley, J. R., Tout, C. A., & Pols, O. R. 2002, MNRAS, 329, 897

[4] Kato, M., Saio, H., & Hachisu, I. 2017, ApJ, 844, 143

[5] Hillman, Y., Prialnik, D., Kovetz, A., & Shara, M. M. 2016, ApJ, 819, 168

